A stable alpha-helical domain at the N terminus of the RIalpha subunits of cAMP-dependent protein kinase is a novel dimerization/docking motif.
نویسندگان
چکیده
The RIalpha subunit of cAMP-dependent protein kinase is maintained as an asymmetric dimer by a dimerization motif at the N terminus. Based on resistance to proteolysis and expression as a discrete domain in Escherichia coli, this motif is defined as residues 12-61. This motif is chemically, kinetically, and thermally stable. The two endogenous interchain disulfide bonds between Cys16 and Cys37 in RIalpha are extremely resistant to reduction even in 8 M urea, indicating that they are well shielded from the reducing environment of the cell. The disulfide bonds were present in recombinant RIalpha as well as when the dimerization domain alone was expressed in E. coli, emphasizing the unusual stability of this motif and the disulfide bonds. Although 100 mM dithiothreitol was sufficient to reduce the disulfide bonds, it did not abolish dimerization. In addition, a stable dimer also still formed when Cys37 was replaced with His, confirming unambiguously the original antiparallel alignment of the disulfide bonds. Thus, both in vitro and in vivo, disulfide bonds are not required for dimerization. Circular dichroism of the dimerization domain indicated a high content of a thermostable alpha-helix. Based on the CD data, trypsin resistance of the fragment, location of the disulfide bonds, and amphipathic helix predictions, potential models are discussed. A new alignment of the dimerization domains of RI, RII, and cGMP-dependent protein kinase elucidates fundamental similarities as well as significant differences among these three domains.
منابع مشابه
A dynamic mechanism for AKAP binding to RII isoforms of cAMP-dependent protein kinase.
A kinase-anchoring proteins (AKAPs) target PKA to specific microdomains by using an amphipathic helix that docks to N-terminal dimerization and docking (D/D) domains of PKA regulatory (R) subunits. To understand specificity, we solved the crystal structure of the helical motif from D-AKAP2, a dual-specific AKAP, bound to the RIIalpha D/D domain. The 1.6 Angstrom structure reveals how this dynam...
متن کاملSignaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design.
The catalytic subunit of cAMP-dependent protein kinase has served as a prototype for the protein kinase superfamily for many years while structures of the cAMP-bound regulatory subunits have defined the conserved cyclic nucleotide binding (CNB) motif. It is only structures of the holoenzymes, however, that enable us to appreciate the molecular features of inhibition by the regulatory subunits a...
متن کاملRelated protein-protein interaction modules present drastically different surface topographies despite a conserved helical platform.
The subcellular localization of cAMP-dependent protein kinase (PKA) occurs through interaction with A-Kinase Anchoring Proteins (AKAPs). AKAPs bind to the PKA regulatory subunit dimer of both type Ialpha and type IIalpha (RIalpha and RIIalpha). RIalpha and RIIalpha display characteristic localization within different cell types, which is maintained by interaction of AKAPs with the N-terminal di...
متن کاملCrystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA.
The 2.0-angstrom structure of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) catalytic subunit bound to a deletion mutant of a regulatory subunit (RIalpha) defines a previously unidentified extended interface. The complex provides a molecular mechanism for inhibition of PKA and suggests how cAMP binding leads to activation. The interface defines the large lobe of the c...
متن کاملIsoform-specific differences between the type Ialpha and IIalpha cyclic AMP-dependent protein kinase anchoring domains revealed by solution NMR.
Cyclic AMP dependent protein kinase (PKA) is controlled, in part, by the subcellular localization of the enzyme (). Discovery of dual specificity anchoring proteins (d-AKAPs) indicates that not only is the type II, but also the type I, enzyme localized (). It appears that the type I enzyme is localized in a novel, dynamic fashion as opposed to the apparent static localization of the type II enz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 272 45 شماره
صفحات -
تاریخ انتشار 1997